Seaborn

0]Countplot [aama x axix pr name che aene cross ma lkhva tay che]
sns.countplot(x='Type 1',data=df,palette='rainbow')
plt.xticks(rotation=70)
plt.rcParams['xtick.labelsize'] = 15

plt.rcParams['axes.labelsize'] = 20




01]ax=df[1:50].plot.area(alpha=0.4, figsize=(5,4))
     ax.legend(bbox_to_anchor=(1.0,1.0))
[aama instant,season,yr,mnth,hr........graph ni bhar lkhva mate
use tay che ax.legenda vadi line add karvi]

1] sns.barplot(x='sex',y='total_bill',data=tips)

Boxplot
2]sns.boxplot(data=df) #pokemon
Default Boxplot

2] # Pre-format DataFrame #pokemon
stats_df = df.drop(['Total', 'Stage', 'Legendary'], axis=1)
# New boxplot using stats_df
sns.boxplot(data=stats_df)
Boxplot with Preprocessed DataFrame
2]sns.boxplot(x='day',y='total_bill',data=tips,palette="rainbow")  #palette use for color
#class

2]sns.boxplot(data=tips,palette="rainbow",orient='h')   #class
    #orient ie lkhe ye che ke output y axis pr aave jo orient na lkheye
      na lkheye to output x axis pr aave ie totalbil,tip,size ae x axis pr aave

2] sns.boxplot(x='day',y='total_bill',hue='smoker',data=tips,palette="rainbow")
     #we use hue for comparisn
   #class

Violinplot
#3c ie class ma krelu
3c]sns.violinplot(x='day',y='total_bill',hue='smoker',data=tips,palette="rainbow")

3c]sns.violinplot(x='day',y='total_bill',hue='sex',data=tips,palette="rainbow")



3]#pokemon detaset
Violin Plot
Swarm plot pokemon dataset
4]# Swarm plot with Pokemon color palette
sns.swarmplot(x='Type 1', y='Attack', data=df,
              palette=pkmn_type_colors)
Swarm Plot
4]# Set figure size with matplotlib
plt.figure(figsize=(10,6))
# Create plot
sns.violinplot(x='Type 1',
               y='Attack',
               data=df,
               inner=None, # Remove the bars inside the violins
               palette=pkmn_type_colors)
sns.swarmplot(x='Type 1',
              y='Attack',
              data=df,
              color='k', # Make points black
              alpha=0.7) # and slightly transparent
# Set title with matplotlib
plt.title('Attack by Type')
Overlaid Swarm and Violin Plots

Swarm plot
5]sns.swarmplot(x='Stat', y='value', data=melted_df,
              hue='Type 1')
Swarmplot with Melted DataFrame
5]
Final Swarmplot

 Heatmap

10.1 - Heatmap

Heatmaps help you visualize matrix-like data.
Seaborn Histogram

10.2 - Histogram

Histograms allow you to plot the distributions of numeric variables.
Seaborn Histogram

10.3 - Bar Plot

Bar plots help you visualize the distributions of categorical variables.
Seaborn Bar Plot

10.4 - Factor Plot

Factor plots make it easy to separate plots by categorical classes.
Factor Plot Example

10.5 - Density Plot

Density plots display the distribution between two variables.
  • Tip: Consider overlaying this with a scatter plot.
Density Plot

10.6 - Joint Distribution Plot

Joint distribution plots combine information from scatter plots and histograms to give you detailed information for bi-variate distributions.
Joint Distribution Plot

GRID

6]

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline


iris=sns.load_dataset('iris')
iris.head()
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
# pair Grid
7]
sns.PairGrid(iris)
g=sns.PairGrid(iris)
g.map(plt.scatter)

Comments

  1. The article is so appealing. You should read this article before choosing the Big Data Implementation Services you want to learn.

    ReplyDelete
  2. Well written articles like yours renews my faith in today's writers. The article is very informative. Thanks for sharing such beautiful information.
    Best Data Migration tools
    Penetration testing companies USA
    What is Data Lake
    Artificial Intelligence in Banking
    What is Data analytics
    Big data Companies USA

    ReplyDelete

Post a Comment

Popular posts from this blog

profile fragment firebase ie image and information vadu page update tay firebase ma

Json_ login